Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Gen Virol ; 104(5)2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37185260

RESUMO

Recombinant Newcastle disease virus (rNDV) strains engineered to express foreign genes from an additional transcription unit (ATU) are considered as candidate live-attenuated vector vaccines for human and veterinary use. Early during the COVID-19 pandemic we and others generated COVID-19 vaccine candidates based on rNDV expressing a partial or complete SARS-CoV-2 spike (S) protein. In our studies, a number of the rNDV constructs did not show high S expression levels in cell culture or seroconversion in immunized hamsters. Sanger sequencing showed the presence of frequent A-to-G transitions characteristic of adenosine deaminase acting on RNA (ADAR). Subsequent whole genome rNDV sequencing revealed that this biased hypermutation was exclusively localized in the ATU expressing the spike gene, and was related to deamination of adenosines in the negative strand viral genome RNA. The biased hypermutation was found both after virus rescue in chicken cell line DF-1 followed by passaging in embryonated chicken eggs, and after direct virus rescue and subsequent passaging in Vero E6 cells. Levels of biased hypermutation were higher in constructs containing codon-optimized as compared to native S gene sequences, suggesting potential association with increased GC content. These data show that deep sequencing of candidate recombinant vector vaccine constructs in different phases of development is of crucial importance in the development of NDV-based vaccines.


Assuntos
COVID-19 , Doença de Newcastle , Vacinas Virais , Animais , Humanos , Vírus da Doença de Newcastle/genética , Vacinas contra COVID-19 , Pandemias , SARS-CoV-2/genética , Galinhas , Vacinas Sintéticas , RNA
2.
Vaccine ; 40(33): 4676-4681, 2022 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-35820941

RESUMO

The emergence of SARS-CoV-2 in December 2019 resulted in the COVID-19 pandemic. Recurring disease outbreaks repeatedly overloaded the public health sector and severely affected the global economy. We developed a candidate COVID-19 vaccine based on a recombinant Newcastle disease virus (NDV) vaccine vector, encoding a pre-fusion stabilized full-length Spike protein obtained from the original SARS-CoV-2 Wuhan isolate. Vaccination of hamsters by intra-muscular injection or intra-nasal instillation induced high neutralizing antibody responses. Intranasal challenge infection with SARS-CoV-2 strain Lelystad demonstrated that both vaccination routes provided partial protection in the upper respiratory tract, and almost complete protection in the lower respiratory tract, as measured by suppressed viral loads and absence of histological lung lesions. Activity wheel measurements demonstrated that animals vaccinated by intranasal inoculation rapidly recovered to normal activity. NDV constructs encoding the spike of SARS-CoV-2 may be attractive candidates for development of intra-nasal COVID-19 booster vaccines.


Assuntos
COVID-19 , Vacinas Virais , Administração Intranasal , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Cricetinae , Humanos , Vírus da Doença de Newcastle/genética , Pandemias/prevenção & controle , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/genética , Vacinas Sintéticas/genética
3.
Methods ; 158: 54-60, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30707951

RESUMO

Avian influenza (AI) is an infectious disease in birds with enormous impact on the poultry sector. AI viruses are divided into different subtypes based on the antigenicity of their surface proteins haemagglutinin (HA) and neuraminidases (NA). In birds, 16 HA subtypes and 9 NA subtypes are detected in different combinations. Traditional serological methods for the subtyping of AI antibodies are labour-intensive and have to be performed for each HA and NA subtype separately. This study describes the development of a multiplex serological assay for subtyping AI antibodies in poultry sera using Luminex xMAP technology. This multiplex assay allows the detection of all AI serotypes in one single assay. For all HA and NA subtypes, recombinant proteins were purified and coupled to colour-coded magnetic bead sets. Using the Luminex MAGPIX device, binding of serum antibodies to the antigens on the bead sets is detected by fluorescent secondary antibodies, and the different bead sets are identified. The results of the multiplex assay were compared with that of the traditional singleplex assays. We show that serotyping using the novel multiplex serological assay is consistent with the results of the traditional assays in 97.8% of the reference sera and in 90.8% of the field sera. The assay has a higher sensitivity than the traditional assays, and requires a smaller sample volume. Therefore, the assay will allow complete AI-serotyping in small volumes of field sera, which will improve the monitoring of AI subtypes circulating in poultry significantly.


Assuntos
Anticorpos Antivirais/isolamento & purificação , Ensaios de Triagem em Larga Escala/métodos , Vírus da Influenza A/classificação , Influenza Aviária/diagnóstico , Doenças das Aves Domésticas/diagnóstico , Sorotipagem/métodos , Animais , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Antígenos Virais/imunologia , Galinhas/virologia , Ensaios de Triagem em Larga Escala/instrumentação , Vírus da Influenza A/imunologia , Influenza Aviária/sangue , Influenza Aviária/imunologia , Influenza Aviária/virologia , Microesferas , Países Baixos , Doenças das Aves Domésticas/sangue , Doenças das Aves Domésticas/imunologia , Doenças das Aves Domésticas/virologia , Sorotipagem/instrumentação
4.
J Virol Methods ; 248: 187-190, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28743584

RESUMO

Reverse genetics systems for non-segmented negative-strand RNA viruses rely on co-transfection of a plasmid containing the full-length viral cDNA and helper plasmids encoding essential viral replication proteins. Here, a system is presented in which virus can be rescued from a single plasmid without the need for helper plasmids in cells infected with a host-restricted recombinant poxvirus that expresses T7 RNA polymerase. This approach relies on the insertion of T7 promoter sequences in the viral cDNA at positions that allow transcription of sub-genomic RNAs encoding essential viral replication proteins.


Assuntos
Clonagem Molecular/métodos , DNA Complementar/genética , Plasmídeos , Vírus de RNA/genética , RNA Viral/genética , Genética Reversa , Linhagem Celular , RNA Polimerases Dirigidas por DNA/genética , Regiões Promotoras Genéticas , Transfecção , Proteínas Virais/genética , Replicação Viral
5.
Virol J ; 10: 276, 2013 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-24007444

RESUMO

BACKGROUND: Highly pathogenic avian influenza (HPAI) viruses pose a potential human health threat as they can be transmitted directly from infected poultry to humans. During a large outbreak of HPAI H7N7 virus among poultry in The Netherlands in 2003, bird to human transmission was confirmed in 89 cases, of which one had a fatal outcome. METHODS: To identify genetic determinants of virulence in a mammalian host, we passaged an avian H7N7/03 outbreak isolate in mouse lungs and evaluated the phenotype of the mouse-adapted variant in animal models and in vitro. RESULTS: Three passages in mouse lungs were sufficient to select a variant that was highly virulent in mice. The virus had a MLD50 that was >4.3 logs lower than that of its non-lethal parental virus. Sequence analysis revealed a single mutation at position 627 in PB2, where the glutamic acid was changed to a lysine (E627K). The mouse-adapted virus has this mutation in common with the fatal human case isolate. The virus remained highly pathogenic for chickens after its passage in mice. In ferrets, the mouse-adapted virus induced more severe disease, replicated to higher titers in the lower respiratory tract and spread more efficiently to systemic organs compared with the parental virus. In vitro, the PB2 E627K mutation had a promoting effect on virus propagation in mammalian, but not in avian cells. CONCLUSIONS: Our results show that the E627K mutation in PB2 alone can be sufficient to convert an HPAI H7N7 virus of low virulence to a variant causing severe disease in mice and ferrets. The rapid emergence of the PB2 E627K mutant during mouse adaptation and its pathogenicity in ferrets emphasize the potential risk of HPAI H7N7 viruses for human health.


Assuntos
Adaptação Biológica , Vírus da Influenza A Subtipo H7N7/genética , Vírus da Influenza A Subtipo H7N7/isolamento & purificação , Mutação de Sentido Incorreto , RNA Polimerase Dependente de RNA/genética , Proteínas Virais/genética , Estruturas Animais/patologia , Estruturas Animais/virologia , Animais , Galinhas , Modelos Animais de Doenças , Feminino , Furões , Influenza Aviária/virologia , Dose Letal Mediana , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Infecções por Orthomyxoviridae/patologia , Infecções por Orthomyxoviridae/virologia , Análise de Sobrevida , Virulência
6.
PLoS One ; 7(8): e44447, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22952980

RESUMO

BACKGROUND: Highly pathogenic avian influenza virus (HPAIV) causes a highly contagious often fatal disease in poultry, resulting in significant economic losses in the poultry industry. HPAIV H5N1 also poses a major public health threat as it can be transmitted directly from infected poultry to humans. One effective way to combat avian influenza with pandemic potential is through the vaccination of poultry. Several live vaccines based on attenuated Newcastle disease virus (NDV) that express influenza hemagglutinin (HA) have been developed to protect chickens or mammalian species against HPAIV. However, the zoonotic potential of NDV raises safety concerns regarding the use of live NDV recombinants, as the incorporation of a heterologous attachment protein may result in the generation of NDV with altered tropism and/or pathogenicity. METHODOLOGY/PRINCIPAL FINDINGS: In the present study we generated recombinant NDVs expressing either full length, membrane-anchored HA of the H5 subtype (NDV-H5) or a soluble trimeric form thereof (NDV-sH5(3)). A single intramuscular immunization with NDV-sH5(3) or NDV-H5 fully protected chickens against disease after a lethal challenge with H5N1 and reduced levels of virus shedding in tracheal and cloacal swabs. NDV-sH5(3) was less protective than NDV-H5 (50% vs 80% protection) when administered via the respiratory tract. The NDV-sH5(3) was ineffective in mice, regardless of whether administered oculonasally or intramuscularly. In this species, NDV-H5 induced protective immunity against HPAIV H5N1, but only after oculonasal administration, despite the poor H5-specific serum antibody response it elicited. CONCLUSIONS/SIGNIFICANCE: Although NDV expressing membrane anchored H5 in general provided better protection than its counterpart expressing soluble H5, chickens could be fully protected against a lethal challenge with H5N1 by using the latter NDV vector. This study thus provides proof of concept for the use of recombinant vector vaccines expressing a soluble form of a heterologous viral membrane protein. Such vectors may be advantageous as they preclude the incorporation of heterologous membrane proteins into the viral vector particles.


Assuntos
Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Virus da Influenza A Subtipo H5N1/imunologia , Influenza Aviária/imunologia , Influenza Aviária/prevenção & controle , Vírus da Doença de Newcastle/imunologia , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/prevenção & controle , Animais , Formação de Anticorpos/imunologia , Galinhas/imunologia , Galinhas/virologia , Feminino , Glicoproteínas de Hemaglutininação de Vírus da Influenza/química , Glicoproteínas de Hemaglutininação de Vírus da Influenza/isolamento & purificação , Humanos , Influenza Aviária/sangue , Influenza Aviária/virologia , Camundongos , Camundongos Endogâmicos BALB C , Infecções por Orthomyxoviridae/virologia , Multimerização Proteica , Recombinação Genética/genética , Solubilidade , Resultado do Tratamento , Vacinação , Eliminação de Partículas Virais/imunologia
7.
Int J Oncol ; 33(4): 823-32, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18813797

RESUMO

A new recombinant (rec) Newcastle disease virus (NDV) with incorporated human interleukin 2 (IL-2) as foreign therapeutic gene [rec(IL-2)] will be described. The foreign gene in rec(IL-2) did not affect the main features of NDV replication nor its tumor selectivity. Biologically active IL-2 was produced in high amounts by tumor cells infected with rec(IL-2). Tumor vaccine cells infected by rec(IL-2) stimulated human T cells to exert anti-tumor activity in vitro in a tumor neutralization assay. These effects were significantly increased when compared to vaccine infected by rec(-) virus without IL-2 gene. After incubation with rec(IL-2) infected tumor cells, T cells showed increased expression of the activation marker CD69 and produced increased amounts of IFNgamma when compared to T cells co-incubated with rec(-) infected tumor cells. CD8 T cells incubated with rec(IL-2) infected tumor cells showed upregulation of perforin, cell surface exposure of the degranulation marker CD107a and increased anti-tumor cytotoxic activity. Purified T cells from lymph nodes of head and neck squamous cell carcinoma (HNSCC) patients could be stimulated to secrete IFNgamma in an ELISPOT assay upon 40 h of stimulation with rec(IL-2) infected autologous tumor cells [ATV-rec(IL-2)] but not upon stimulation with rec(IL-2) infected allogeneic U937 tumor cells. This suggests direct activation of patient derived tumor antigen-specific memory T cells by ATV-rec(IL-2). In conclusion, the already inherent immunostimulatory properties of NDV could be further augmented by the introduction of the therapeutic gene IL-2. Active specific immunization of patients with ATV-rec(IL-2) should provide the microenvironment at the vaccination site with IL-2 and avoid side effects as seen after systemic IL-2 application.


Assuntos
Vacinas Anticâncer/metabolismo , Interleucina-2/metabolismo , Vírus da Doença de Newcastle/genética , Linfócitos T/virologia , Antígenos CD/biossíntese , Antígenos de Diferenciação de Linfócitos T/biossíntese , Carcinoma de Células Escamosas/imunologia , Carcinoma de Células Escamosas/virologia , Linhagem Celular Tumoral , Citometria de Fluxo , Neoplasias de Cabeça e Pescoço/imunologia , Neoplasias de Cabeça e Pescoço/virologia , Humanos , Lectinas Tipo C , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/virologia , Ativação Linfocitária , Ligação Proteica , Linfócitos T/metabolismo , Células U937
8.
J Gen Virol ; 86(Pt 6): 1759-1769, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15914855

RESUMO

Virulence of Newcastle disease virus (NDV) is mainly determined by the amino acid sequence surrounding the fusion (F) protein cleavage site, since host proteases that cleave the F protein of virulent strains are present in more tissues than those that cleave the F protein of non-virulent strains. Nevertheless, comparison of NDV strains that carry exactly the same F protein cleavage site shows that significant differences in virulence still exist. For instance, virulent field strain Herts/33 with the F cleavage site 112RRQRRF117 had an intracerebral pathogenicity index of 1.88 compared with 1.28 for strain NDFLtag, which has the same cleavage site. This implies that additional factors contribute to virulence. After generating an infectious clone of Herts/33 (FL-Herts), we were able to map the location of additional virulence factors by exchanging sequences between FL-Herts and NDFLtag. The results showed that, in addition to the F protein cleavage site, the haemagglutinin-neuraminidase (HN) protein also contributed to virulence. The effect of the HN protein on virulence was most prominent after intravenous inoculation. Interestingly, both the stem region and the globular head of the HN protein seem to be involved in determining virulence.


Assuntos
Genoma Viral , Proteína HN/fisiologia , Doença de Newcastle/virologia , Vírus da Doença de Newcastle/patogenicidade , Proteínas Virais de Fusão/fisiologia , Fatores de Virulência/fisiologia , Animais , Sítios de Ligação , Galinhas , Dados de Sequência Molecular , Vírus da Doença de Newcastle/genética , Recombinação Genética , Proteínas Virais de Fusão/metabolismo , Virulência
9.
J Gen Virol ; 85(Pt 8): 2375-2378, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15269379

RESUMO

Many paramyxoviruses encode non-essential accessory proteins that are involved in the regulation of virus replication and inhibition of cellular antiviral responses. It has been suggested that the P gene mRNA of Newcastle disease virus (NDV) encodes an accessory protein - the so-called X protein - by translation initiation at a conserved in-frame AUG codon at position 120. Using a monoclonal antibody that specifically detected the P and X proteins, it was shown that an accessory X protein was not expressed in NDV-infected cells. Recombinant NDV strains in which the AUG was changed into a GCC (Ala) or GUC (Val) codon were viable but showed a reduction in virulence, probably because the amino acid change affected the function of the P and/or V protein.


Assuntos
Genes Virais , Vírus da Doença de Newcastle/genética , Fosfoproteínas/genética , Proteínas Virais/genética , Códon
10.
J Gen Virol ; 84(Pt 2): 475-484, 2003 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-12560582

RESUMO

Virulence of Newcastle disease virus (NDV) is mainly determined by the amino acid sequence of the fusion (F0) protein cleavage site. Full-length NDV cDNA clone pNDFL was used to generate infectious NDV with defined mutations in the F0 cleavage site (RRQRR downward arrow L, GRQGR downward arrow F, RRQGR downward arrow F, RGQRR downward arrow F and RKQKR downward arrow F). All the mutants were viable and the mutations were maintained after virus propagation in embryonated eggs. The mutants showed single-cell infections on chicken embryo fibroblasts, which suggested that they were non-virulent. However, virulence tests in 1-day-old chickens resulted in an intracerebral pathogenicity index (ICPI) between 0 and 1.3. Moreover, virulent virus was isolated from chickens that had died in the virulence tests. Subsequent sequence analysis showed that the mutants RRQRR downward arrow L, RRQGR downward arrow F, RGQRR downward arrow F and RKQKR downward arrow F gave rise to the appearance of revertants containing the virulent cleavage site RRQ(K/R)R downward arrow F and an ICPI of 1.4 or higher. This indicated that reversion to virulence was caused by alteration of the amino acid sequence of the F0 cleavage site from a non-virulent to a virulent type. Furthermore, the ICPI of the revertants was higher than that of cDNA-derived strain NDFLtag, which has the same cleavage site, RRQRR downward arrow F (ICPI=1.3). NDFLtag(Pass), which was isolated from dead chickens after intracerebral inoculation of NDFLtag, also showed an increase in the ICPI from 1.3 to 1.5. This study proves that reversion to virulence occurs within non-virulent NDV populations and that the virulence may increase after one passage in chicken brain.


Assuntos
Mutação , Vírus da Doença de Newcastle/patogenicidade , Doenças das Aves Domésticas/virologia , Proteínas Virais de Fusão/química , Animais , Encéfalo/virologia , Células Cultivadas , Embrião de Galinha , Galinhas , Células Gigantes/fisiologia , Doença de Newcastle/fisiopatologia , Doença de Newcastle/virologia , Vírus da Doença de Newcastle/genética , Vírus da Doença de Newcastle/isolamento & purificação , Doenças das Aves Domésticas/fisiopatologia , Proteínas Virais de Fusão/genética , Proteínas Virais de Fusão/metabolismo , Ensaio de Placa Viral , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...